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Analytical and numerical investigation of escape rate for a noise driven bath
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We consider a system-reservoir model where the reservoir is modulated by an external noise. Both the
internal noise of the reservoir and the external noise are stationary, Gaussian, and are characterized by arbitrary
decaying correlation functions. Based on a relation between the dissipation of the system and the response
function of the reservoir driven by external noise, we numerically examine the model using a full bistable
potential to show that one can recover the turn-over features of the usual Kramers’ dynamics when the external
noise modulates the reservoir rather than the system directly. We derive the generalized Kramers' rate for this
nonequilibrium open system. The theoretical results are verified by numerical simulation.
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[. INTRODUCTION context of activated rate processes when the reservoir is
modulated by an external noise. Specifically our object here
More than half a century ago Kramers proposed a diffu-is twofold: (i) to explore the role of reservoir response as a
sion model for chemical reactions in terms of the theory offunction of external noise on the system dynamics in contrast
Brownian motion in phase spa¢&]. Since then the model to the direct driving of the system by external noi§é), to
and several of its variants have been ubiquitous in mangalculate the generalized Kramers' rate for the steady state of
areas of physics, chemistry, and biology for understandinghis nonequilibrium open system taking full care of thermo-
the nature of activated processes in clasg§izal7], quantum, dynamic consistency condition. Both the internal and the ex-
and semiclassical8—11] systems, in general. These haveternal noises are Gaussian, stationary, and are characterized
become the subject of several reviefi®—14 and mono- by arbitrary decaying correlation functions. While the inter-
graph[15] in the recent past. nal noise of the reservoir is thermal, the external noise may
In the majority of these treatments one is essentially conbe of thermal or nonthermal type. We consider the stochastic
cerned with an equilibrium thermal bath at a finite temperaimotion to be spatial diffusion limited and calculate the rate
ture, which stimulates the reaction coordinate to cross thef escape in the intermediate to strong damping regime. It is
activation energy barrier. The inherent noise of the mediunworth mentioning that the externally generated nonequilib-
is of internal origin. This implies that the dissipative force, rium fluctuations can bias the Brownian motion of a particle
which the system experiences in course of its motion in thén an anisotropic medium and may be used for designing
medium, and the stochastic force acting on the system asmolecular motors and pump&2]. We further mention that
result of random impact from the constituents of the me-nonequilibrium, nonthermal systems have also been investi-
dium, arise from a common mechanism. From a microscopigated phenomenologically by a number of workers in several
point of view the system-reservoir Hamiltonian descriptionother contexts, e.g., for examining the role of color noise in
[16—19 developed over the decades suggests that the costationary probabilitie§23], properties of nonlinear systems
pling of the system and the reservoir coordinates determing24], nature of crossove25], rate of diffusion limited co-
both the noise and the dissipative terms in the Langeviragulation processef26], effect of monochromatic noise
equation describing the motion of the system. It is therefor¢27], etc. While these treatments concern direct driving of
not difficult to anticipate that these two entities get relatedthe system by an external noise, the present consideration is
through a fluctuation-dissipation relati20] (these systems based on modulation of the bath. A number of different situ-
are sometimes classified as a thermodynamically closed syations depicting the modulation of the bath by an external
tem in contrast to the systems driven by external noise imoise may be physically relevant. As, for example, we con-
nonequilibrium statistical mechani¢g1]). However, when sider a simple unimolecular conversigsay, an isomeriza-
the reservoir is modulated by an external noise it is likelytion reaction from A—B. The reaction is carried out in a
that this relation gets affected in a significant way. Since thghotochemically active solvent under the influence of exter-
modulation of the reservoir crucially depends on its responseal fluctuating light intensity. Since the fluctuations in the
function, one can further envisage a connection between theght intensity result in the fluctuations in the polarization of
dissipation of the system and the response function of théhe solvent molecules, the effective reaction field around the
reservoir due to the external noise from a microscopic pointeactant system gets modified. Provided the required station-
of view. arity of this nonequilibrium open system is maintained
In the present paper we explore this connection in th&€which is not difficult in view of the experiments performed
in the studies of external noise-induced transitions in photo-
chemical systemf28]) the dynamics of barrier crossing be-
*Present address: Department of Physics, Katoa College, Katoapmes amenable to the present theoretical analysis that fol-
Burdwan, West Bengal, India. lows.
"Email address: pcdsr@mahendra.iacs.res.in The remaining part of this paper is organized as follows:
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In Sec. Il we discuss a system-reservoir model where the(t) is the internal forcing function generated through the
later is modulated by an external noise and establish an ircoupling between the system and the heat bath and is given
teresting connection between the dissipation of the systerpy

and the response function of the reservoir due to external

noise. The stochastic motion in a linearized potential field is N

described in terms of a Fokker-Planck equation in Sec. III.f(t):E gi{[qi(O)—gix(O)]wi2 coswit+v;(0)w; sinw;t}.
Based on the traditional flux over population metth2€] we =1

derive in Sec. IV the generalized expression for the Kramers’ ®)
rate of escape from a metastable well. In Sec. V we numeri- ) )

cally analyze the model and the bath modulated dynamics fdf? Ed- (3), 7(t) is a fluctuating force term due to the external
the full potential and verify the theoretical rate with numeri- N0is€€(t) and is given by

cal simulation. The paper is concluded in Sec. VI.

t
W(t)=—f p(t—t")e(t’)dt’, (6)
Il. THE SYSTEM-RESERVOIR MODEL: THE RESERVOIR 0
MODULATED BY AN EXTERNAL NOISE
where
We consider a classical particle of madg linearly
coupled to a heat bath &f harmonic oscillators driven by an N
external noise. The total Hamiltonian is given [#8] <P(t)=2 gi K w; Sinwjt. (7)
i=1
p? S [
H= o +V(0+3 > H'eriwiz(qi—gix)z +Hing - The form of Eq.(3) therefore suggests that the system is
i=1 i

driven by two forcing function$(t) and =(t). f(t) depends
(1) on the initial conditions of the bath oscillators for a fixed
choice of the initial condition of the system degrees of free-

In Eq. (1), x andp are the coordinate and momentum of the 451, 14 gefine the statistical propertiesfdt), we assume
system particle,d; ,p;) are the variables associated with the 4t theinitial distribution is one in which the bath is equili-

ith oscillator, andv; andm; are the corresponding frequency i atad att=0 in the presenceof the system but in theb-
and mass, respectivelg;x measures the interaction between ¢, caof the external noise agency such tliét))=0 and
the particle and the batNV,(x) is the potential energy of the FOF()) =k Ty(t—t").

particle.Hiy is assumed to be of the form Now, att=0, , the external noise agency is switched on

and the bath is modulated k(t). The system is governed
N Z et @ by Eq.(3), where, apart from the internal noi§&), another
ntt2 & Kidie(t). fluctuating forcew(t) appears, that depends on the external
noise €(t). Therefore, one can define an effective noise
The coupling functione; measures the strength of interaction §(Y)[=f(t) + m(t)] whose correlation is given by
and e(t) is the external noise, which we assume to be sta-

tionary and Gaussian with zero mean, i(&(t)).=0 and is DEE Y= KaT v(t—t' +2thdt’ft'dt” t—t/
characterized by an arbitrary correlation function as follows: (et =keTr( ) 0 0 o )

N

(e(t)e(t'))e=2DW(t—t"). Xo(t' —t")W(t'—t"), (8

along with{{(£(t)))=0, where((---)) means we have taken

Here( ...). implies the averaging over the external noise.
Wé the>r$ eliﬁnnate the bat% gegrees of freedom in thdWo averages independently. It should be emphasized that the

usual way{16,18,19,30to obtain the following generalized above relation(8) is not a fluctuation-dissipation relation due
Langevin equ,atic,)n ' to the appearance of the external noise intensity. Rather it

serves as a thermodynamic consistency condition.

Let us now digress a little bit about(t). The statistical
properties ofr(t) are determined by the normal-mode den-
sity of the bath frequencies, the coupling of the system with
.odvoot o , , the bath, the coupling of the bath with the external noise, and
VT ax fodt Y(A=tho()+fO+ (1) 3 the external noise itself. Equatid) is reminiscent of the
familiar linear relation between the polarization and the ex-
ternal field, wherer and e play the role of the former and
the latter, respectivelyp(t) can then be interpreted as a
response function of the reservoir due to external ne{sg

N The very structure ofr(t) suggests that this forcing func-
7(t)=2 gizwiz coswit. (4) tion, aIth.ough o_riginating from an external force, is diff_ergnt
=1 from a direct driving force acting on the system. The distinc-

X=v,

[while constructing Eq(3) we have seM and m; equal to
unity] where
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tion lies at the very nature of the bath characteristrasher t Ko t

than system characteristjcas reflected in the relation$) x(t)=((x(t)>)+j dt'h(t—t’)f(t')——%w%f dt’

and (7). 0 %o 0
With the coupling coefficientsg(w)=g,/\7.w and Ko t

k(w)=T.wko, in the continuum limif30], ¥(t) and ¢(t) Xh(t=t")e(t")— g_ch dt’hy(t—t")e(t"),

reduce to the following forms: o -0

(13
g5
y(t)= T—j dw D(w)coswt (9 where we have made use of the relatiaa) explicitly. Here
Cc
and {(X(D)=xx(1)x(0) +h(t)v(0) (14
_ with x(0) andv(0) being the initial position and initial ve-
sﬂ(t):goKof do D(w)w sinet, (100 locity of the oscillator, respectively, which are nonrandom
and
where g, and k, are constants and_ * is the cutoff fre- .
guency of the oscillatorD(w) is the density of modes of the t=|1— 2J' h(7d 15
heat bath. xx(t) “0 s (md7]. 19
From the above two relations, we obtain
The kernelh(t) is the Laplace inversion of
Sty ap
dt Ko TC¢ ' 1
h(s)= —=—— (16)

T 2.7 27
Equation(11) is an important content of the present model. s+ y(s)stwp

This expresses how the dissipative kerrnét) depends on

the response functiop(t) of the medium due to external \yhere’y(s)= e Sty(t)dt is the Laplace transform of the
noisee(t) [see Eq(6)]. Such a relation for the open system friction kernel y(t), and

can be anticipated in view of the fact that both the dissipation

and the response function crucially depend on the properties

of the reservoir especially on its density of modes and its d2h(t)

coupling to the system and the external noise source. In what ha(t) = a2 17
follows we shall be concerned with the consequences of this

relation in terms of the Langevin description in the next sec-

tion [Eq. (12)] and numerical analysis of the full model po- The time derivative of Eq(13) yields

tential in Sec. V.

— ! ’ ’ ’ Ko 2jt '
lll. THE FOKKER-PLANCK DESCRIPTION v®=(vON+ fodt hy(t=t)H(U) =5 “rewp | dt

OF THE LINEARIZED MOTION: ASYMPTOTIC

t
ANALYSIS OF THE FOKKER-PLANCK COEFFICIENTS Xhy(t—t)e(t’)— ﬁTcJ dt’ha(t—t')e(t’)
We now consider the system to be a harmonically bound 9o “Jo
particle of unit mass and of frequenay. Then because of (18
Eq. (6), the Langevin equatiofB) becomes

where
X=v,
{(v(D)))=—wih(t) +v(0)hy(1), (19
t
i)=—w(2)x—J dt’ y(t—t")v(t") +f(t)

0 dh(t) d3h(t)

t hl(t):T and hy(t)=——7Hn (20)
—f dt’ o(t—t')e(t’). (12) dt

0

Next we calculate the variances. From the formal solution
The Laplace transform of Eq12) allows us to write a for- of x(t) andv(t), the explicit expressions for the variances
mal solution for the displacement of the form are obtained, which are given below:
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al(t)= t) — ((x(t)))]? - 1
D =X = CXODED ID(M,/J,t)=eXp[i((X(t)>>M+i((v(t)>>p—§[0x2x(t)u2

t t
=2 [Cathity [ Mdhe(fi)
0 0

+202 (t)pp+al,(H)p?];. (24)
Ko 2 2 rt ty
+2 g cv0 fodtlh(tl) J; dtz h(tz) Using the method of characteristic functifdl,32 and the
above expressiori24) we find the general Fokker-Planck
X{e(ty)e(ts))e equation associated with the probability density function
2 - . p(x,v,t) for the procesg$12):
Ko 1
+2| — Jdt hy(t f dt, hy(t
gOTc) o 2(t1) 0 2ha(t2) ap » -, p — 4 azp
0 Vg Two(hXo ot Y(t)%(vp)+¢(t)ﬁ
X (e(ty)e(ty))e v
2
2 t t I p
+2 ﬁrc) %% f dt, h(ty) f dt; hy(ty) T G 29
Yo 0 0
X(e(ty)e(ty))e, (21) ‘Where
— d
y(H)=——InY(1),
2 5 dt
o, (D=(v () = ONI)
t . (0= —h(t)hy(t)+h3(1)
~2 [ du) | “at ) 0 Yo
2 ry t h(t) t
i2 ﬁTcwg) J dt, hi(ty) J "dt,hy(ty) V()= 1- w? f drh(7) | +h2(1).
Yo 0 0 wj 0
X(e(ty)e(ts))e The functionse¢(t) and (t) are defined by
Ko\ [ g — o — 2, 1,
+2 O fodtlhs(tl)fo dty ha(tz) b(t)=wp(t) o, + yo,,+ 504 and
0
X(e(ty)e(tz))e Y(t)= 6X21)+7(t)ole)+;goxzx— O'UZU , (26)
2
+2 ﬂTC) w%ftdtlhl(tl)Jtldtz ha(t,) where the covariances are to be calculated for a particular
Y0 0 0 given noise process.

29 For the internal noise processes it had been shown earlier
X(e(ty)e(tz))e, (22) that for sevgral models the various time-dependent param-
etersazo(t), y(t), etc. do exist asymptotically ds—»o. The
above consideration shows thagt), h,(t), etc. do not de-
pend on_the nature of the noise but depend only on the re-
laxation y(t).
2 4y _ _ We now discuss the asymptotic properties #fft) and
t) = ([ x(t X(t t t
70 (D= (X O O = (o) (1), which in turn are dependent on the varianoe;ﬁ(t)
w and crvzv(t) ast—o, since they play a significant role in our
o7 o), (23 further analysis that follows.
From Egs.(21) and(22), we may write

and

2 4y 2(i) 2(e)
where we have assumed that the noi$@ and e(t) are T = a0 (D F oy (1) and

symmetric with respect to the time argument and have made
use of the fact that(t) and e(t) are uncorrelated.

Due to the Gaussian property of the noiség ande(t)  where “i” denotes the part corresponding to internal noise
and the linearity of the Langevin equati¢h?), we see that f(t) and “e” corresponds to the external noig€t). Since

the joint probability densityp(x,v,t) of the oscillator must the average velocity of the oscillator is zerotas>, we see
be Gaussian. The joint characteristic function associated witfrom Eq. (19) that h(t) and h,(t) must be zero as— .

the density is Also from Eq.(14) we observe that the functiogp,(t) must

o2 ()=020t)+020(1),
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decay to zero for long times. Hence, from E5) we see
that the stationary value of the integral lnft) is 1/w2, i.e.,

® 1
f h(tydt=—. (27)
0 wq

Now, ¢20(t) and ¢20(t) of Egs. (21) and (22) can be
written in the form

o t ty
O.X)((l)(t)zzf dtlh(tl)f dt, h(t2)<f(t1)f(t2)>
0 0

—szftd h(7)—h?(t)— w3 ftd h i
=kg 07(7) (t)— wg Or(r)
(28)
and
) t ty
520w =2 atyhycty) [ Mt 111
0 0
=kgT[1—h3(t) — w3h?(1)]. (29

From the above two expressiofisgs.(28) and(29)] we see
that

| KT |
oXZX(”(oo):% and o 20()=kgT.
0

(30

PHYSICAL REVIEW E 63061111

[(ko/go) Tcw3h(s)1?(€?(s))e. Since we have assumed the

stationarity of the noise(t), we conclude that i€(0) exists
[whereC(t—t')=(e(t)e(t’))c], then the stationary value of
axzx(e)(t) exists and becomes a constant that depends on the
correlation time and the strength of the noise. A similar ar-
gument is also valid forr 2©)(t).

Summarizing the above discussions we note that,

(i) the internal noise-driven parts @f2(t) and o2 (t),
ie., 02" and o2V, approach the fixed values that are in-
dependent of the noise correlation and the intensityt as
— 00,

(i) the external noise-driven parts of variances also ap-
proach the constant values at the stationary ) limit that
are dependent on the strength and the correlation time of the
noise.

Hence we conclude, following Reff33] and our preced-
ing discussions, that even in presence of an external noise the
above terms do exist asymptotically and we write the steady-
state Fokker-Planck equation for the asymptotic values of the
parameters as

2 2

p — P —3 ap Ja°p
_Uﬁ_x+wox£+7£(UP)+¢(W)F+¢(W)§U&X
=0, (33

wherew?, y, ¢(), (=), etc. are to be calculated from the
general definition(26) for the steady state. As an explicit
example, we consider the case oféecorrelated external

It is important to note that these stationary values are nofi®is€ and Omstein-Uhlenbeck intermal noise for which we

related to the intensity and correlation time of the internalProvide the expressions for variances(t), o (), and

noise. o, (t) and the relaxation functioh(t) given in the Appen-
We next consider the parts2®(t) ando2®(t), due to  dix. . _

the presence of the external noise. The Laplace transform of The general steady-state solution of the above(88).is

Eq. (13) yields the expression

1 F{ v? ng
Pole0)= 7€ =25, 2D+ p=)

, (34
e (34
X(s) ={(x(s)))=h(s)f(s) = —7cwph(s)e(s)
9o where
7 sTR(SE(S) (31 $(=)
— —75°h(s)e(s), ©
9o ¢ Do=—=— (35)
Y
where , L .
andZ is the normalization constant. The soluti@34) can be
B 1 w2 verified by direct substitution. The distributid®4) is not an
XEN=\2——F5 = 0 > X(0) equilibrium distribution. This stationary distribution for the
S s[s*+sy(s)+ wpl nonequilibrium open system plays the role of an equilibrium
distribution of the closed system, which may, however, be
I 1 recovered in the absence of external noise term.
5= >v(0)
S“+sy(s)+ wy
~ IV. KRAMERS' ESCAPE RATE
:{E_wgﬁ} x(0)+h(s)v(0). (32) We now turn to the problem of decay of a metastable
S S state. In Kramers approa¢h], the particle coordinate cor-

) . responds to the reaction coordinate, and its values at the
From the above E31) we can calculate the varla_nogzx " minima of the potentiaV/(x) denotes the reactant and prod-
the Laplace-transformed space, which can be identified ag:t states.

the Laplace transform of E21). Thus, for the part, 5 (1) Linearizing the motion around barrier top & x,,, the
we observe that oxzx(e)(s) contains terms like Langevin equatiori3) can be written down as
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compared to Kramers’ ansatz. While in the latter case one
considers a complete factorization of the equilibrium part
. t (Boltzmann and the dynamical part, the ans&89) incor-
vzwﬁy—f dt’ y(t—t")o(t")+f(t)+x(t), (36) porates the additional dynamical contribution through dissi-
0 pation and strength of the noise into the exponential part.
This modification of Kramers’ ansatby dynamic$is due to
the nonequilibrium nature of the system. Thus unlike Kram-
1 ers’, the exponential factors in E(B9) and in the stationary
V(y)=Vp— Ewﬁyz; w§>0. (37) distribution (34), which serves as a boundary condition, are
markedly different. Before carrying out global analysis in the

Correspondingly the motion of the particle is governed byPresent section our aim here is to understand the modifica-

y=v,

wherey=x—x, and the barrier frequenoyﬁ is defined by

the Fokker-Planck equatia25) tion of the rate due to modulation of the bath driven by an
external noise, within the perview of Kramers’ type ansatz.
ap ap 92 The internal consis;ency of the treatment, however, can be
o Vay wb(t)y + yb(t) (vp) + ¢b(t) — checked by recovering the Kramers’ result when the external
noise is switched off.
a2p From Eq.(38), using Eq.(39) we obtain the equation for
+ hp(t) —— 0ay’ (38) &(y,v) in the steady state in the neighborhoodxgf
where the suffix ‘b” indicates that all the coefficients are to <1+ wb(m)) &—g way + v |— %
be calculated using the general definiti@®) for the barrier Dy dy [ Dpt (=) dv
top region. azf 92
It is apparent from Eq933) and (38) that since the dy- + ¢b(°°) + () (42)
namics are non-Markovian and the system is thermodynami- v 19y

caIIy open, one has to deal with the renormalized frequenmesﬂ i ‘th ) ‘ ) q
wo and wp, near the bottom or top of the well, respectively. After making use of the appropriate transformations an

We make the ansatz that the nonequilibrium, steady- Stat130undary conditions for reduced distribution functidiTs,
probability p,, generating a nonvanishing diffusion current We obtain the barrier crossing rakegiven by
j, across the barrier is given by

wg Dy A )1’2”[ —-E, }
~ =5= XA=—F"7
- v? V(x) 27 {Do+ ih()} 2\ 1+ ADy Dp+ ¢hp() |’
pb(x,v)—ex;{—{ZDb+Db+¢b(m)} &(x,v), (39 (43
where where
\
() -~
Db:(m)— : (40) A Pp() +ayp(e)
Yo
with

V(x) is the renormalized linear potential as

1~ Y~ V7b+4wb} and

~ 1
V() =V(xo)+ 5 w3(Xx—Xo)?, near the bottom, a= 2{Db+ l/fb(w)}
1, A=—7y,—a 1+¢b(w)>.
V(X)=V(xp) — wb(x Xp)?, nearthetop (41) Dy

Here E is the activation energ¥q,=V(X,) — V(Xg). Since
with ZS, 5§>0. The unknown functioré(x,v) obeys the the temperature is due to internal thermal noise, the strength
natural boundary condition that fer—, £(x,v) vanishes. of the external noise and the damping constant are buried in

The ansatz of the fornt89) denoting the steady-state dis- the parameter®,, Dy, ¢y, ¥y, and A; the generalized
tribution is motivated by the local analysis near the bottomexpression looks somewhat cumbersome. We point out that
and the top of the barrier in the Kramers' sef&¢ For a  the subscripts “0” and ‘b in D and ¢ refer to the well or
stationary nonequilibrium system, on the other hand, thédarrier top region, respectively. Equati#d) is one of the
relative population of the two regions, in general, depends okey results of this paper. We note here théDy
the global properties of the potential leading to an additionak- ,())/kg in the exponential factor defines a neffective
factor in the rate expression. Although because of the Kramtemperature characteristic of the steady state of the nonequi-
ers’ type ansat1], which is valid for the local analysis, librium open system and a@ffectivetransmission factor is
such a consideration is outside the scope of the present treaontained in the prefactor controlling the barrier crossing dy-
ment, we point out a distinctive feature in the ans&@9) namics. As expected both are the functions of the external
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FIG. 1. Plot of barrier crossing ratk,vs damping constarg2. FIG. 2. Plot of barrier crossing ratevs external noise strenth D

The solid and the dotted line correspond to direct driving of thefor a constantgg. The curve(a) represents the results for bath
system and bath modulation, respective=0.1). The dashed Modulation while the curvéb) is the result for direct additive driv-
line corresponds to the thermodynamically closed system, i.e., th#g (units are arbitrary
system without any external driving>(=0.0). kgT=0.1 is com-
mon for all the three curveinits are arbitrary driven system(be it directly or through bath modulatipis
. . . always higher that in the undriven one. Figure 1 also shows
noise strengtlD and the coupling of noise to the bath modes.,[h t although in the low damping region the direct driving
e epenace o e ot o o ettt can be €400 much e e 1, Howeer, h b
’ tion that becomes more effective in inducing activated bar-
rier crossing in the high friction regime. It is thus interesting
to note that the barrier crossing dynamics of the system in
contact with an external noise modulated bath captures the
A. The model: bath modulation vs direct driving essential turnover features of the Kramers’ dynamics of the
Iclosed system. We therefore realize that although open, the
nature of the response function of the reservoir as well as the
thermodynamic consistency conditid8), make the open

V. NUMERICAL ANALYSIS OF THE MODEL AND THE
BARRIER CROSSING RATE

We first explore the distinctive aspects of the externa
noise-driven-reservoir-modulated dynamics of the sygiam
contact with the external noise driven bpih contrast to .
direct driving of the system by the external noise. This will SYStem feel like a closed system.

help us to elucidate the special role of the reservoir responsfe In Fig. 2 we show t?e vgnatu?nhof |tnverst$] offtthhe mtean |
function in controlling the rate. To this end we first return to Irst passage time as a function of the strength of the externa

our basic equation of the model, E®), whereo(t—t') as ng)i_seD, kez_aping all other parameter_ same as be_fore but for
given by Eq.(7), characterizes the response function. We90=2.0. It is apparent that the barrier crossing is more fa-
solve this equation numerically using a second-order stocilitated by modulating the bath than driving the system di-
chastic algorithm of FoX34] for the full potential V(x) rectly for higher values of external noise strength.

= (1/4)x*— (1/2)x?> and plot the results of computation of

the inverse of the mean first passage time as a function of the B. The rate: Theoretical results vs numerical simulation

damping constangj [ see Eq(9) ] in Fig. 1. The density of So far we have considered the full potentisl(x)
modes of the bath has been assumed to be of the standad{ 1/4)x*— (1/2)x?> and vanishingly small correlation times
Lorentzian formD(w)=(2/m7.)[1/(w?+ ;)] with van-  for external and internal noises for numerical computation.
ishing internal correlation time,. Typically for the other We now turn to our basic theoretical result E43), which is
scaled parameters, we have udgd =0.1, the strength of a generalization of Kramers’ rate for bath modulated dynam-
the 6-correlated external noise=0.1. The mean first pas- ics for intermediate to strong damping regime. To examine
sage times have been calculated by averaging over 1000 validity we calculate the raté43) as a function of the
trajectories. We first show the continuous curve in Fig. 1,damping constargg [go is related to bothy(t) and ¢(t) in
which represents the case of direct driving by the externakqs.(9) and(10), respectively for several values of external
o-correlated noise. What is immediately apparent is the losgoise strengtid. The scaled barrier heigl, andkgT have

of turnover of the rate as one allows the variation of thepeen set to 0.25 and 0.1, respectively. The results are plotted
dissipation constang3 from low to high friction regime. in Fig. 3 (continuous curveand compared to the rate and
This is in sharp contrast to what is shown by the dotted curvénverse of the mean first passage titdetted curve calcu-

in Fig. 1, which depicts the situation of bath modulation with lated numerically using the full potential for the set of pa-
the response functioa(t—t') determined by Eq.10). Both  rameter valuesas given in the earlier sectipmwith Eq. (3).

the curvegcontinuous and dottedepresenting the open sys- In Figs 4 and 5 we further compare our theoretical results
tem are compared to that for the standard Kramers’ turnoveKcontinuous curvewith numerical simulationdotted curve

i.e., when the dynamics are calculated in absence of the efer the variation of rate as a function of external noise
ternal noise(dashed curve As expected the rate in the strength and its correlation time, respectively, for several val-
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0.05

2.0 25 3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5
go2 Ta
. . , FIG. 5. Plot of barrier crossing ratevs correlation time of the
. FIG. 3. Plot of bar.ner crossing ratevs dqmplng constang for external noiser, for different values of external noise strengfbs
dlfferen_t external noise strengtiiz The solid lines correspond_ 10 The solid and the dotted lines are same as in Figa D =0.5, (b)
thgoretlcal resulfEq. (52)] and the dotted curves are due to SIMU- b _ 1 0, and(c) D= 1.5 (units are arbitrary
lation. (a) D=0.15, (b) D=0.10, and(c) D=0.05 (units are arbi-
trary).
emphasize the question of thermodynamic consistency in the
ues of damping constant. It is apparent from Figs 3—5 thatontext of open systems. With the present theory being mi-
the theoretical and numerical results are in good agreementroscopic, the fluctuation-dissipationlike relati@) remains
an inbuilt characteristic of the model itself as an essential
VI. CONCLUSIONS thermodynamic consistency condition.
(iii) Based on numerical simulation of the full model po-

Based on a system-reservoir microscopic model, wher .
1 asy p - ntial we show that one can recover the turnover features of
the reservoir is modulated by an external, stationary, an

Gaussian noise with an arbitrary decaying correlation func;[he :<ranr1\t/erisr rdilaamfsnvzﬂen thf r?nxfi:natll no_:_sh(? rr:odu\l/atres
tion, we have numerically analyzed the model and general- € reservorr rather than the syste ectly. This recovery,

ized the Kramers’ theory to calculate the steady-state rate o€ believe, is an offshoot of the derived thermodynamic

escape from a metastable well. The main conclusions of thi§Onsistency conditiotg).
paper are as follows: (iv) Provided the long-time limit of the moments for the

(i) We have shown that since the reservoir is driven by theStochastic processes pertaining to the external and internal
external noise and the dissipative properties of the systefioises characterized by arbitrary decaying correlation func-
depend on the reservoir, a Simp|e connection between thfé)ns exist, the expression for the generalized Kramers’ rate
dissipation and the response function of the medium due t6f barrier crossing for the open system we derive here is
the external noise can be established. This connection is infairly general. We have shown that it agrees reasonably well
portant for realizing an effective temperature of the reservoiwith numerical simulation using full potential for this model.
characterizing the stationary state of the thermodynamically The creation of a typical nonequilibrium open situation by
open system, as well as afffective transmission fact@on-  modulating a bath with the help of an external noise is not an
trolling the rate. Both of these quantities depend on theincommon phenomenon in applications and industrial pro-
strength and correlation time of the external noise. cessing. The external agency generating noise does work on

(i) Many of the earlier treatments of the rate concernthe bath by stirring, pumping, agitating, etc., to which the
direct (phenomenologicaldriving of the system and did not system dissipates internally. In the present treatment we are

concerned with a nonequilibrium steady state that signifies a

0.04 constant throughput of energy in contrast to thermal equilib-
rium defined by a constant temperature. We believe that
0.03+ (@ these considerations are likely to be important in other re-
: lated issues in nonequilibrium open systems and may serve
0.024 as a basis for studying processes occurring within irrevers-
= ibly driven environment$§6,35] and for thermal ratchet prob-
lems[22].
0.011
00800 0.05 0.10 0.15 ACKNOWLEDGMENTS
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FIG. 4. Plot of barrier crossing ratevs external noise strength, for DOiﬂting out R?f-[35] to us. _S-K-B- is indebted to the
D for different values ofj3. The solid and the dotted lines are same Council of Scientific and Industrial Resear(@SIR), Gov-
as in Fig. 3.(a) g2=2.0 and(b) g3=3.0 (units are arbitrary ernment of India for financial support.

061111-8



ANALYTICAL AND NUMERICAL INVESTIGATION O F. ..

APPENDIX: CALCULATION OF VARIANCES

We consider a particular case as an example where the
external noise(t) is & correlated and the internal noise is an

Ornstein-Uhlenbeck process, i.e.,
(e(t)e(t’))e=2Da(t—t")

and

oksT :
(D))= 2 i,
Tc

Consequently, from the fluctuation-dissipation relation we

derive the dissipative kernel as

g2

—t’ :_O —|t=t"|/7¢
y(t—t") 7_ce .

It should be noted that for,—0, the above noise process

becomes correlated.

The Laplace transform of(t), as given above, can be

written as

9

st.t+1’

Y(s)=
and subsequently, we have feg#0,

) s+a
S§)=———,
s*+as’+bs+c,

where
2 2
1 9o g
a=—, b=wi+—, and co=—.
Tc Tc Tc

We find that the inverse Laplace transformhgs) reads
h(t)=c,e 21+ ce 22t sin( Bt + a), (A1)

where the coefficients,, c,, A4, A,, B, anda are given
by

1 a
A2=§(A+B)+§, (A2Db)
V3
B= 7(A—B), (A2¢)
1
Clzm, (A2d)
2A,—Ay)—AS—p2
dza( 2—Ay)—A3Z 3, (A20)

a_Al

PHYSICAL REVIEW E 63061111

A= —Z—i %b %+ J@) 1/3, (A2f)
B=| - :—i %b - % - J@) 1/3, (A29)
o=~ (A= 8,4 B (A2h)
a=tan ! p and (A2i)
d—a,
Q=—ﬁ+b—3+&—ab—Co C—g (A2))

108 27 27 6 4

Here we note that for a physically allowed solutidn, A,
must be positive. Since by Eq16) h(t) depends on the
memory kernely(t), which is of decaying type and all the
moments, in general, reach asymptotic constancy as shown
in Sec. lll, these quantities are positig@hich depends on
the correlation timer., the strength of the noise, and other
potential parametersvhich may be checkethfter some al-
gebra by considering the limiting cases such as-0 and
T.— large.

Substituting Eq.(Al) into the expressions for variances
(external noise is5 correlated, namely into Eqs(21) and
(22), we have after some lengthy algebra

o) =020+ 03P,

where
) c C
UXZX(')(t)=kBT(c2R+A—l 2—w§<c2R+A—1”
1 1
2
Cl ZAqt 2 2(1)001
N 1 _ - - =
+kBT[ Ale 2 2(1)0C2R Al
+e 21 cq+ — —w§HC
1%1 Al A§+ﬁ2 ov2

2

+ wo—cl(e—ﬁﬁ—l)}mzsin(ﬁw @)
Ay

+ B cod Bt+ a)]—2c,ce” ArtAdlgin Bt+ a)
A-Bwlcie 242t 2)2c2e— 280t

- SePente TE e sin2(pt+a)— L0 7 2
(AS+B%)? (AS+B%)?

w(2B°-4%)
(AZ+B%)?

11 coe 22t sir?(Bt+ a)}
(A3)

with
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1 Similarly
R=———=(A,sina+ B cosa) (A4)
AZ+ B o2t = 20(t) + 5 2O1),
and

where

2
[ci(wg+AT+205AT)IA(L)

0.2(8)(t):2D(ﬂ7.c .
XX Jo O_UZU(I)(t) =kgT— [(A%-f- wS)Cie_ZAlt-f— ﬂ2cge— 2A,t

+c3{wp+(A3—BA)2-4B%A5 — BA,c2e 222 sin 2 Bt + o)
+203(A5— B} a(t) +2¢;Cof wg + AZ(AS— %) +(A24 wi— g2)cle 222t Sin?( Bt + o)
+ wd(AT+AS— B} (1)~ 2¢58A, +e (A1 2400 ¢ w2+ AgA,)sin(Bt+ a)
X (A3— B2+ wf)1p(t) +4c5B2 A5 ¢(t) —2A,8¢41¢, cos Bt + a)}] (A7)
—4C1CoBAH(AT+ w3) £(1)]. (A5)
and

Here thel’s are defined by

| A(1)= f;e_ZAltdt’ (A6a) ofv(e><t>=2D(g—§rc Z[cEA%wéM%)ZIA(t)
t +c3{(wg+A3—38%)2A3— (w5 +3A3- B%)°8%)
Ig(t)= foeﬂzt Sirf(Bt+ a)dt, (A6b) X Ig(t)+2C1C,A 14 5(wd+A2)
t X (05—3B%+ A3 (1)~ C5BAL(3A 5~ B2+ wp)
0= [ st ad (a6 X(@f =37+ AD) (1) + 362
t X (05— B>+ 3A3)1E(t) —2¢1oBA1 (AT + wf)
ID(t)=foe’2A2‘ sin2(Bt+a)dt, (A60) X (024302 B (0], (A8)
le(t)= Jte*M?dt and (A6e)  Wherel's are defined in EqSA6a)—(A6f). The explicit ex-
0 pression foroxzv(t) can be derived from Ed23). In the limit

t—oo we calculate the stationary values of the variances. The

le(t)= f e (ihcog prraydt,  (Ah)  VANIANCeSoi(), og(x), and o (=) yield ¢(x) and
0 () and other relevant quantities.
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