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Analytical and numerical investigation of escape rate for a noise driven bath
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We consider a system-reservoir model where the reservoir is modulated by an external noise. Both the
internal noise of the reservoir and the external noise are stationary, Gaussian, and are characterized by arbitrary
decaying correlation functions. Based on a relation between the dissipation of the system and the response
function of the reservoir driven by external noise, we numerically examine the model using a full bistable
potential to show that one can recover the turn-over features of the usual Kramers’ dynamics when the external
noise modulates the reservoir rather than the system directly. We derive the generalized Kramers’ rate for this
nonequilibrium open system. The theoretical results are verified by numerical simulation.
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I. INTRODUCTION

More than half a century ago Kramers proposed a dif
sion model for chemical reactions in terms of the theory
Brownian motion in phase space@1#. Since then the mode
and several of its variants have been ubiquitous in m
areas of physics, chemistry, and biology for understand
the nature of activated processes in classical@2–7#, quantum,
and semiclassical@8–11# systems, in general. These ha
become the subject of several reviews@12–14# and mono-
graph@15# in the recent past.

In the majority of these treatments one is essentially c
cerned with an equilibrium thermal bath at a finite tempe
ture, which stimulates the reaction coordinate to cross
activation energy barrier. The inherent noise of the medi
is of internal origin. This implies that the dissipative forc
which the system experiences in course of its motion in
medium, and the stochastic force acting on the system
result of random impact from the constituents of the m
dium, arise from a common mechanism. From a microsco
point of view the system-reservoir Hamiltonian descripti
@16–19# developed over the decades suggests that the
pling of the system and the reservoir coordinates determ
both the noise and the dissipative terms in the Lange
equation describing the motion of the system. It is theref
not difficult to anticipate that these two entities get rela
through a fluctuation-dissipation relation@20# ~these systems
are sometimes classified as a thermodynamically closed
tem in contrast to the systems driven by external noise
nonequilibrium statistical mechanics@21#!. However, when
the reservoir is modulated by an external noise it is lik
that this relation gets affected in a significant way. Since
modulation of the reservoir crucially depends on its respo
function, one can further envisage a connection between
dissipation of the system and the response function of
reservoir due to the external noise from a microscopic po
of view.

In the present paper we explore this connection in
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context of activated rate processes when the reservo
modulated by an external noise. Specifically our object h
is twofold: ~i! to explore the role of reservoir response as
function of external noise on the system dynamics in cont
to the direct driving of the system by external noise,~ii ! to
calculate the generalized Kramers’ rate for the steady stat
this nonequilibrium open system taking full care of therm
dynamic consistency condition. Both the internal and the
ternal noises are Gaussian, stationary, and are characte
by arbitrary decaying correlation functions. While the inte
nal noise of the reservoir is thermal, the external noise m
be of thermal or nonthermal type. We consider the stocha
motion to be spatial diffusion limited and calculate the ra
of escape in the intermediate to strong damping regime.
worth mentioning that the externally generated nonequi
rium fluctuations can bias the Brownian motion of a partic
in an anisotropic medium and may be used for design
molecular motors and pumps@22#. We further mention that
nonequilibrium, nonthermal systems have also been inve
gated phenomenologically by a number of workers in seve
other contexts, e.g., for examining the role of color noise
stationary probabilities@23#, properties of nonlinear system
@24#, nature of crossover@25#, rate of diffusion limited co-
agulation processes@26#, effect of monochromatic noise
@27#, etc. While these treatments concern direct driving
the system by an external noise, the present consideratio
based on modulation of the bath. A number of different si
ations depicting the modulation of the bath by an exter
noise may be physically relevant. As, for example, we co
sider a simple unimolecular conversion~say, an isomeriza-
tion reaction! from A→B. The reaction is carried out in a
photochemically active solvent under the influence of ext
nal fluctuating light intensity. Since the fluctuations in th
light intensity result in the fluctuations in the polarization
the solvent molecules, the effective reaction field around
reactant system gets modified. Provided the required stat
arity of this nonequilibrium open system is maintain
~which is not difficult in view of the experiments performe
in the studies of external noise-induced transitions in pho
chemical systems@28#! the dynamics of barrier crossing be
comes amenable to the present theoretical analysis that
lows.

The remaining part of this paper is organized as follow

a,
©2001 The American Physical Society11-1
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In Sec. II we discuss a system-reservoir model where
later is modulated by an external noise and establish an
teresting connection between the dissipation of the sys
and the response function of the reservoir due to exte
noise. The stochastic motion in a linearized potential field
described in terms of a Fokker-Planck equation in Sec.
Based on the traditional flux over population method@29# we
derive in Sec. IV the generalized expression for the Krame
rate of escape from a metastable well. In Sec. V we num
cally analyze the model and the bath modulated dynamics
the full potential and verify the theoretical rate with nume
cal simulation. The paper is concluded in Sec. VI.

II. THE SYSTEM-RESERVOIR MODEL: THE RESERVOIR
MODULATED BY AN EXTERNAL NOISE

We consider a classical particle of massM linearly
coupled to a heat bath ofN harmonic oscillators driven by a
external noise. The total Hamiltonian is given by@18#

H5
p2

2M
1V~x!1

1

2 (
i 51

N H pi
2

mi
1miv i

2~qi2gix!2J 1Hint .

~1!

In Eq. ~1!, x andp are the coordinate and momentum of t
system particle, (qi ,pi) are the variables associated with t
i th oscillator, andv i andmi are the corresponding frequenc
and mass, respectively.gix measures the interaction betwe
the particle and the bath.V(x) is the potential energy of the
particle.Hint is assumed to be of the form

Hint5
1

2 (
i 51

N

k iqie~ t !. ~2!

The coupling functionk i measures the strength of interactio
and e(t) is the external noise, which we assume to be s
tionary and Gaussian with zero mean, i.e.,^e(t)&e50 and is
characterized by an arbitrary correlation function as follow

^e~ t !e~ t8!&e52DC~ t2t8!.

Here ^ . . . &e implies the averaging over the external nois
We then eliminate the bath degrees of freedom in

usual way@16,18,19,30# to obtain the following generalized
Langevin equation

ẋ5v,

v̇52
dV

dx
2E

0

t

dt8g~ t2t8!v~ t8!1 f ~ t !1p~ t ! ~3!

@while constructing Eq.~3! we have setM and mi equal to
unity# where

g~ t !5(
i 51

N

gi
2v i

2 cosv i t. ~4!
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f (t) is the internal forcing function generated through t
coupling between the system and the heat bath and is g
by

f ~ t !5(
i 51

N

gi$@qi~0!2gix~0!#v i
2 cosv i t1v i~0!v i sinv i t%.

~5!

In Eq. ~3!, p(t) is a fluctuating force term due to the extern
noisee(t) and is given by

p~ t !52E
0

t

w~ t2t8!e~ t8!dt8, ~6!

where

w~ t !5(
i 51

N

gik iv i sinv i t. ~7!

The form of Eq.~3! therefore suggests that the system
driven by two forcing functionsf (t) andp(t). f (t) depends
on the initial conditions of the bath oscillators for a fixe
choice of the initial condition of the system degrees of fre
dom. To define the statistical properties off (t), we assume
that theinitial distribution is one in which the bath is equili
brated att50 in the presenceof the system but in theab-
senceof the external noise agency such that^ f (t)&50 and
^ f (t) f (t8)&5kBTg(t2t8).

Now, at t501 , the external noise agency is switched
and the bath is modulated bye(t). The system is governed
by Eq.~3!, where, apart from the internal noisef (t), another
fluctuating forcep(t) appears, that depends on the exter
noise e(t). Therefore, one can define an effective no
j(t)@5 f (t)1p(t)# whose correlation is given by

Š^j~ t !j~ t8!&‹5kBTg~ t2t8!12DE
0

t

dt8E
0

t8
dt9w~ t2t8!

3w~ t82t9!C~ t82t9!, ~8!

along withŠ^j(t)&‹50, whereŠ^•••&‹ means we have take
two averages independently. It should be emphasized tha
above relation~8! is not a fluctuation-dissipation relation du
to the appearance of the external noise intensity. Rathe
serves as a thermodynamic consistency condition.

Let us now digress a little bit aboutp(t). The statistical
properties ofp(t) are determined by the normal-mode de
sity of the bath frequencies, the coupling of the system w
the bath, the coupling of the bath with the external noise,
the external noise itself. Equation~6! is reminiscent of the
familiar linear relation between the polarization and the e
ternal field, wherep and e play the role of the former and
the latter, respectively.w(t) can then be interpreted as
response function of the reservoir due to external noisee(t).
The very structure ofp(t) suggests that this forcing func
tion, although originating from an external force, is differe
from a direct driving force acting on the system. The distin
1-2
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tion lies at the very nature of the bath characteristics~rather
than system characteristics! as reflected in the relations~6!
and ~7!.

With the coupling coefficientsg(v)5g0 /Atcv and
k(v)5Atcvk0, in the continuum limit@30#, g(t) andw(t)
reduce to the following forms:

g~ t !5
g0

2

tc
E dv D~v!cosvt ~9!

and

w~ t !5g0k0E dv D~v!v sinvt, ~10!

where g0 and k0 are constants andtc
21 is the cutoff fre-

quency of the oscillator.D(v) is the density of modes of th
heat bath.

From the above two relations, we obtain

dg

dt
52

g0

k0

1

tc
w~ t !. ~11!

Equation~11! is an important content of the present mod
This expresses how the dissipative kernelg(t) depends on
the response functionw(t) of the medium due to externa
noisee(t) @see Eq.~6!#. Such a relation for the open syste
can be anticipated in view of the fact that both the dissipat
and the response function crucially depend on the prope
of the reservoir especially on its density of modes and
coupling to the system and the external noise source. In w
follows we shall be concerned with the consequences of
relation in terms of the Langevin description in the next s
tion @Eq. ~12!# and numerical analysis of the full model po
tential in Sec. V.

III. THE FOKKER-PLANCK DESCRIPTION
OF THE LINEARIZED MOTION: ASYMPTOTIC

ANALYSIS OF THE FOKKER-PLANCK COEFFICIENTS

We now consider the system to be a harmonically bou
particle of unit mass and of frequencyv0. Then because o
Eq. ~6!, the Langevin equation~3! becomes

ẋ5v,

v̇52v0
2x2E

0

t

dt8g~ t2t8!v~ t8!1 f ~ t !

2E
0

t

dt8w~ t2t8!e~ t8!. ~12!

The Laplace transform of Eq.~12! allows us to write a for-
mal solution for the displacement of the form
06111
.
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x~ t !5Š^x~ t !&‹1E
0

t

dt8h~ t2t8! f ~ t8!2
k0

g0
tcv0

2E
0

t

dt8

3h~ t2t8!e~ t8!2
k0

g0
tcE

0

t

dt8h2~ t2t8!e~ t8!,

~13!

where we have made use of the relation~11! explicitly. Here

Š^x~ t !&‹5xx~ t !x~0!1h~ t !v~0! ~14!

with x(0) andv(0) being the initial position and initial ve
locity of the oscillator, respectively, which are nonrando
and

xx~ t !5F12v0
2E

0

t

h~t!dtG . ~15!

The kernelh(t) is the Laplace inversion of

h̃~s!5
1

s21g̃~s!s1v0
2

, ~16!

where g̃(s)5*0
`e2stg(t)dt is the Laplace transform of the

friction kernelg(t), and

h2~ t !5
d2h~ t !

dt2
. ~17!

The time derivative of Eq.~13! yields

v~ t !5Š^v~ t !&‹1E
0

t

dt8h1~ t2t8! f ~ t8!2
k0

g0
tcv0

2E
0

t

dt8

3h1~ t2t8!e~ t8!2
k0

g0
tcE

0

t

dt8h3~ t2t8!e~ t8!

~18!

where

Š^v~ t !&‹52v0
2h~ t !1v~0!h1~ t !, ~19!

h1~ t !5
dh~ t !

dt
and h3~ t !5

d3h~ t !

dt3
. ~20!

Next we calculate the variances. From the formal solut
of x(t) and v(t), the explicit expressions for the variance
are obtained, which are given below:
1-3
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sxx
2 ~ t !5Š^@x~ t !2Š^x~ t !&‹#2&‹

52E
0

t

dt1 h~ t1!E
0

t1
dt2 h~ t2!^ f ~ t1! f ~ t2!&

12S k0

g0
tcv0

2D 2E
0

t

dt1 h~ t1!E
0

t1
dt2 h~ t2!

3^e~ t1!e~ t2!&e

12S k0

g0
tcD 2E

0

t

dt1 h2~ t1!E
0

t1
dt2 h2~ t2!

3^e~ t1!e~ t2!&e

12S k0

g0
tcD 2

v0
2E

0

t

dt1 h~ t1!E
0

t1
dt2 h2~ t2!

3^e~ t1!e~ t2!&e , ~21!

svv
2 ~ t !5Š^@v~ t !2Š^v~ t !&‹#2&‹

52E
0

t

dt1 h1~ t1!E
0

t1
dt2 h1~ t2!^ f ~ t1! f ~ t2!&

12S k0

g0
tcv0

2D 2E
0

t

dt1 h1~ t1!E
0

t1
dt2 h1~ t2!

3^e~ t1!e~ t2!&e

12S k0

g0
tcD 2E

0

t

dt1 h3~ t1!E
0

t1
dt2 h3~ t2!

3^e~ t1!e~ t2!&e

12S k0

g0
tcD 2

v0
2E

0

t

dt1 h1~ t1!E
0

t1
dt2 h3~ t2!

3^e~ t1!e~ t2!&e , ~22!

and

sxv
2 ~ t !5Š^@x~ t !2Š^x~ t !&‹#@v~ t !2Š^v~ t !&‹#&‹

5
1

2
ṡxx

2 ~ t !, ~23!

where we have assumed that the noisesf (t) and e(t) are
symmetric with respect to the time argument and have m
use of the fact thatf (t) ande(t) are uncorrelated.

Due to the Gaussian property of the noisesf (t) ande(t)
and the linearity of the Langevin equation~12!, we see that
the joint probability densityp(x,v,t) of the oscillator must
be Gaussian. The joint characteristic function associated
the density is
06111
e

th

p̃~m,r,t !5expH i Š^x~ t !&‹m1 i Š^v~ t !&‹r2
1

2
@sxx

2 ~ t !m2

12sxv
2 ~ t !rm1s vv

2 ~ t !r2#J . ~24!

Using the method of characteristic function@31,32# and the
above expression~24! we find the general Fokker-Planc
equation associated with the probability density functi
p(x,v,t) for the process~12!:

]p

]t
52v

]p

]x
1v̄0

2~ t !x
]p

]v
1ḡ~ t !

]

]v
~vp!1f~ t !

] 2p

]v2

1c~ t !
] 2p

]v]x
, ~25!

where

ḡ~ t !52
d

dt
ln Y~ t !,

v̄0
2~ t !5

2h~ t !h1~ t !1h1
2~ t !

Y~ t !
and

Y~ t !5
h1~ t !

v0
2 F12v0

2E
0

t

dt h~t!G1h2~ t !.

The functionsf(t) andc(t) are defined by

f~ t !5v̄0
2~ t !sxv

2 1ḡsvv
2 1

1

2
ṡxv

2 and

c~ t !5ṡxv
2 1ḡ~ t !sxv

2 1v̄0
2sxx

2 2svv
2 , ~26!

where the covariances are to be calculated for a partic
given noise process.

For the internal noise processes it had been shown ea
that for several models the various time-dependent par
etersv̄0

2(t), ḡ(t), etc. do exist asymptotically ast→`. The
above consideration shows thath(t), h1(t), etc. do not de-
pend on the nature of the noise but depend only on the
laxation ḡ(t).

We now discuss the asymptotic properties off(t) and
c(t), which in turn are dependent on the variancessxx

2 (t)
andsvv

2 (t) ast→`, since they play a significant role in ou
further analysis that follows.

From Eqs.~21! and ~22!, we may write

sxx
2 ~ t !5sxx

2(i )~ t !1sxx
2(e)~ t ! and

svv
2 ~ t !5svv

2(i )~ t !1svv
2(e)~ t !,

where ‘‘i ’’ denotes the part corresponding to internal noi
f (t) and ‘‘e’’ corresponds to the external noisee(t). Since
the average velocity of the oscillator is zero ast→`, we see
from Eq. ~19! that h(t) and h1(t) must be zero ast→`.
Also from Eq.~14! we observe that the functionxx(t) must
1-4
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decay to zero for long times. Hence, from Eq.~15! we see
that the stationary value of the integral ofh(t) is 1/v0

2, i.e.,

E
0

`

h~ t !dt5
1

v0
2

. ~27!

Now, sxx
2(i )(t) and svv

2(i )(t) of Eqs. ~21! and ~22! can be
written in the form

sxx
2(i )~ t !52E

0

t

dt1 h~ t1!E
0

t1
dt2 h~ t2!^ f ~ t1! f ~ t2!&

5kBTF2E
0

t

dt h~t!2h2~ t !2v0
2H E

0

t

dt h~t!J 2G
~28!

and

svv
2(i )~ t !52E

0

t

dt1 h1~ t1!E
0

t1
dt2 h1~ t2!^ f ~ t1! f ~ t2!&

5kBT@12h1
2~ t !2v0

2h2~ t !#. ~29!

From the above two expressions@Eqs.~28! and~29!# we see
that

sxx
2(i )~`!5

kBT

v0
2

and svv
2(i )~`!5kBT. ~30!

It is important to note that these stationary values are
related to the intensity and correlation time of the inter
noise.

We next consider the partssxx
2(e)(t) andsvv

2(e)(t), due to
the presence of the external noise. The Laplace transform
Eq. ~13! yields the expression

x̃~s!2Š^x̃~s!&‹5h̃~s! f̃ ~s!2
k0

g0
tcv0

2h̃~s!ẽ~s!

2
k0

g0
tcs

2h̃~s!ẽ~s!, ~31!

where

Š^x̃~s!&‹5H 1

s
2

v0
2

s@s21sg̃~s!1v0
2#
J x~0!

1
1

s21sg̃~s!1v0
2 v~0!

5H 1

s
2v0

2 h̃~s!

s J x~0!1h̃~s!v~0!. ~32!

From the above Eq.~31! we can calculate the variancesxx
2 in

the Laplace-transformed space, which can be identified
the Laplace transform of Eq.~21!. Thus, for the partsxx

2(e)(t)

we observe that s̃xx
2(e)(s) contains terms like
06111
ot
l

of

as

@(k0 /g0)tcv0
2h̃(s)#2^ẽ 2(s)&e . Since we have assumed th

stationarity of the noisee(t), we conclude that ifC̃(0) exists
@whereC(t2t8)5^e(t)e(t8)&e#, then the stationary value o
sxx

2(e)(t) exists and becomes a constant that depends on
correlation time and the strength of the noise. A similar
gument is also valid forsvv

2(e)(t).
Summarizing the above discussions we note that,
~i! the internal noise-driven parts ofsxx

2 (t) and svv
2 (t),

i.e., sxx
2(i ) and svv

2(i ) , approach the fixed values that are i
dependent of the noise correlation and the intensity at
→`,

~ii ! the external noise-driven parts of variances also
proach the constant values at the stationary (t→`) limit that
are dependent on the strength and the correlation time of
noise.

Hence we conclude, following Ref.@33# and our preced-
ing discussions, that even in presence of an external noise
above terms do exist asymptotically and we write the stea
state Fokker-Planck equation for the asymptotic values of
parameters as

2v
]p

]x
1v̄0

2x
]p

]v
1ḡ

]

]v
~vp!1f~`!

] 2p

]v2
1c~`!

] 2p

]v]x

50, ~33!

wherev̄0
2, ḡ, f(`), c(`), etc. are to be calculated from th

general definition~26! for the steady state. As an explic
example, we consider the case of ad-correlated externa
noise and Ornstein-Uhlenbeck internal noise for which
provide the expressions for variancessxx

2 (t), svv
2 (t), and

sxv
2 (t) and the relaxation functionh(t) given in the Appen-

dix.
The general steady-state solution of the above Eq.~33! is

pst~x,v !5
1

Z
expF2H v2

2D0
1

v̄0
2x

2~D01c~`!!
J G , ~34!

where

D05
f~`!

ḡ
~35!

andZ is the normalization constant. The solution~34! can be
verified by direct substitution. The distribution~34! is not an
equilibrium distribution. This stationary distribution for th
nonequilibrium open system plays the role of an equilibriu
distribution of the closed system, which may, however,
recovered in the absence of external noise term.

IV. KRAMERS’ ESCAPE RATE

We now turn to the problem of decay of a metasta
state. In Kramers approach@1#, the particle coordinatex cor-
responds to the reaction coordinate, and its values at
minima of the potentialV(x) denotes the reactant and pro
uct states.

Linearizing the motion around barrier top atx5xb , the
Langevin equation~3! can be written down as
1-5
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ẏ5v,

v̇5vb
2y2E

0

t

dt8g~ t2t8!v~ t8!1 f ~ t !1p~ t !, ~36!

wherey5x2xb and the barrier frequencyvb
2 is defined by

V~y!5Vb2
1

2
vb

2y2; vb
2.0. ~37!

Correspondingly the motion of the particle is governed
the Fokker-Planck equation~25!

]p

]t
52v

]p

]y
2v̄b

2~ t !y
]p

]v
1ḡb~ t !

]

]v
~vp!1fb~ t !

] 2p

]v2

1cb~ t !
] 2p

]v]y
, ~38!

where the suffix ‘‘b’’ indicates that all the coefficients are t
be calculated using the general definition~26! for the barrier
top region.

It is apparent from Eqs.~33! and ~38! that since the dy-
namics are non-Markovian and the system is thermodyna
cally open, one has to deal with the renormalized frequen
v̄0 and v̄b near the bottom or top of the well, respective
We make the ansatz that the nonequilibrium, steady-s
probability pb , generating a nonvanishing diffusion curre
j, across the barrier is given by

pb~x,v !5expF2H v2

2Db
1

Ṽ~x!

Db1cb~`!
J Gj~x,v !, ~39!

where

Db5
fb~`!

ḡb

. ~40!

Ṽ(x) is the renormalized linear potential as

Ṽ~x!5V~x0!1
1

2
v̄0

2~x2x0!2, near the bottom,

Ṽ~x!5V~xb!2
1

2
v̄b

2~x2xb!2, near the top ~41!

with v̄0
2, v̄b

2.0. The unknown functionj(x,v) obeys the
natural boundary condition that forx→`, j(x,v) vanishes.

The ansatz of the form~39! denoting the steady-state di
tribution is motivated by the local analysis near the bott
and the top of the barrier in the Kramers’ sense@1#. For a
stationary nonequilibrium system, on the other hand,
relative population of the two regions, in general, depends
the global properties of the potential leading to an additio
factor in the rate expression. Although because of the Kra
ers’ type ansatz@1#, which is valid for the local analysis
such a consideration is outside the scope of the present t
ment, we point out a distinctive feature in the ansatz~39!
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compared to Kramers’ ansatz. While in the latter case
considers a complete factorization of the equilibrium p
~Boltzmann! and the dynamical part, the ansatz~39! incor-
porates the additional dynamical contribution through dis
pation and strength of the noise into the exponential p
This modification of Kramers’ ansatz~by dynamics! is due to
the nonequilibrium nature of the system. Thus unlike Kra
ers’, the exponential factors in Eq.~39! and in the stationary
distribution ~34!, which serves as a boundary condition, a
markedly different. Before carrying out global analysis in t
present section our aim here is to understand the modifi
tion of the rate due to modulation of the bath driven by
external noise, within the perview of Kramers’ type ansa
The internal consistency of the treatment, however, can
checked by recovering the Kramers’ result when the exte
noise is switched off.

From Eq.~38!, using Eq.~39! we obtain the equation fo
j(y,v) in the steady state in the neighborhood ofxb

2S 11
cb~`!

Db
D v

]j

]y
2F Db

Db1cb~`!
v̄b

2y1ḡbvG ]j

]v

1fb~`!
] 2j

]v2
1cb~`!

] 2j

]v]y
50. ~42!

After making use of the appropriate transformations a
boundary conditions for reduced distribution functions@7#,
we obtain the barrier crossing ratek given by

k5
v̄0

2p

Db

$D01c~`!%1/2S L

11LDb
D 1/2

expF 2E0

Db1cb~`!G ,
~43!

where

L5
l

fb~`!1acb~`!

with

a5
Db

2$Db1cb~`!%
$2ḡb2Aḡb

214v̄b
2% and

l52ḡb2aS 11
cb~`!

Db
D .

Here E0 is the activation energyE05V(xb)2V(x0). Since
the temperature is due to internal thermal noise, the stren
of the external noise and the damping constant are burie
the parametersD0 , Db , c0 , c0, and L; the generalized
expression looks somewhat cumbersome. We point out
the subscripts ‘‘0’’ and ‘‘b’’ in D andc refer to the well or
barrier top region, respectively. Equation~43! is one of the
key results of this paper. We note here that„Db
1cb(`)…/kB in the exponential factor defines a neweffective
temperature characteristic of the steady state of the none
librium open system and aneffectivetransmission factor is
contained in the prefactor controlling the barrier crossing
namics. As expected both are the functions of the exte
1-6
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noise strengthD and the coupling of noise to the bath mode
The dependence of the rate on the parameters can be exp
explicitly once we consider the typical cases.

V. NUMERICAL ANALYSIS OF THE MODEL AND THE
BARRIER CROSSING RATE

A. The model: bath modulation vs direct driving

We first explore the distinctive aspects of the exter
noise-driven-reservoir-modulated dynamics of the system~in
contact with the external noise driven bath! in contrast to
direct driving of the system by the external noise. This w
help us to elucidate the special role of the reservoir respo
function in controlling the rate. To this end we first return
our basic equation of the model, Eq.~3!, wherew(t2t8) as
given by Eq.~7!, characterizes the response function. W
solve this equation numerically using a second-order
chastic algorithm of Fox@34# for the full potential V(x)
5(1/4)x42(1/2)x2 and plot the results of computation o
the inverse of the mean first passage time as a function o
damping constantg0

2 @ see Eq.~9! # in Fig. 1. The density of
modes of the bath has been assumed to be of the stan
Lorentzian formD(v)5(2/ptc)@1/(v21tc

22)# with van-
ishing internal correlation timetc . Typically for the other
scaled parameters, we have usedkBT50.1, the strength of
the d-correlated external noiseD50.1. The mean first pas
sage times have been calculated by averaging over 10
trajectories. We first show the continuous curve in Fig.
which represents the case of direct driving by the exter
d-correlated noise. What is immediately apparent is the l
of turnover of the rate as one allows the variation of t
dissipation constantg0

2 from low to high friction regime.
This is in sharp contrast to what is shown by the dotted cu
in Fig. 1, which depicts the situation of bath modulation w
the response functionw(t2t8) determined by Eq.~10!. Both
the curves~continuous and dotted! representing the open sys
tem are compared to that for the standard Kramers’ turno
i.e., when the dynamics are calculated in absence of the
ternal noise~dashed curve!. As expected the rate in th

FIG. 1. Plot of barrier crossing rate,k vs damping constantg0
2.

The solid and the dotted line correspond to direct driving of
system and bath modulation, respectively (D50.1). The dashed
line corresponds to the thermodynamically closed system, i.e.,
system without any external driving (D50.0). kBT50.1 is com-
mon for all the three curves~units are arbitrary!.
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driven system~be it directly or through bath modulation! is
always higher that in the undriven one. Figure 1 also sho
that although in the low damping region the direct drivin
causes a much higher rate, it is, however, the bath mod
tion that becomes more effective in inducing activated b
rier crossing in the high friction regime. It is thus interestin
to note that the barrier crossing dynamics of the system
contact with an external noise modulated bath captures
essential turnover features of the Kramers’ dynamics of
closed system. We therefore realize that although open,
nature of the response function of the reservoir as well as
thermodynamic consistency condition~8!, make the open
system feel like a closed system.

In Fig. 2 we show the variation of inverse of the me
first passage time as a function of the strength of the exte
noiseD, keeping all other parameter same as before but
g0

252.0. It is apparent that the barrier crossing is more
cilitated by modulating the bath than driving the system
rectly for higher values of external noise strength.

B. The rate: Theoretical results vs numerical simulation

So far we have considered the full potentialV(x)
5(1/4)x42(1/2)x2 and vanishingly small correlation time
for external and internal noises for numerical computati
We now turn to our basic theoretical result Eq.~43!, which is
a generalization of Kramers’ rate for bath modulated dyna
ics for intermediate to strong damping regime. To exam
its validity we calculate the rate~43! as a function of the
damping constantg0

2 @g0 is related to bothg(t) andw(t) in
Eqs.~9! and~10!, respectively# for several values of externa
noise strengthD. The scaled barrier heightE0 andkBT have
been set to 0.25 and 0.1, respectively. The results are plo
in Fig. 3 ~continuous curve! and compared to the rate an
inverse of the mean first passage time~dotted curve! calcu-
lated numerically using the full potential for the set of p
rameter values~as given in the earlier section! with Eq. ~3!.
In Figs 4 and 5 we further compare our theoretical resu
~continuous curve! with numerical simulation~dotted curve!
for the variation of rate as a function of external noi
strength and its correlation time, respectively, for several v

e

he

FIG. 2. Plot of barrier crossing ratek vs external noise strenth D
for a constantg0

2. The curve~a! represents the results for bat
modulation while the curve~b! is the result for direct additive driv-
ing ~units are arbitrary!.
1-7
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ues of damping constant. It is apparent from Figs 3–5 t
the theoretical and numerical results are in good agreem

VI. CONCLUSIONS

Based on a system-reservoir microscopic model, wh
the reservoir is modulated by an external, stationary,
Gaussian noise with an arbitrary decaying correlation fu
tion, we have numerically analyzed the model and gene
ized the Kramers’ theory to calculate the steady-state rat
escape from a metastable well. The main conclusions of
paper are as follows:

~i! We have shown that since the reservoir is driven by
external noise and the dissipative properties of the sys
depend on the reservoir, a simple connection between
dissipation and the response function of the medium du
the external noise can be established. This connection is
portant for realizing an effective temperature of the reserv
characterizing the stationary state of the thermodynamic
open system, as well as aneffective transmission factorcon-
trolling the rate. Both of these quantities depend on
strength and correlation time of the external noise.

~ii ! Many of the earlier treatments of the rate conce
direct ~phenomenological! driving of the system and did no

FIG. 3. Plot of barrier crossing ratek vs damping constantg0
2 for

different external noise strengthsD. The solid lines correspond to
theoretical result@Eq. ~52!# and the dotted curves are due to sim
lation. ~a! D50.15, ~b! D50.10, and~c! D50.05 ~units are arbi-
trary!.

FIG. 4. Plot of barrier crossing ratek vs external noise strength
D for different values ofg0

2. The solid and the dotted lines are sam
as in Fig. 3.~a! g0

252.0 and~b! g0
253.0 ~units are arbitrary!.
06111
at
nt.

re
d
-
l-
of
is

e
m
he
to

-
ir
ly

e

emphasize the question of thermodynamic consistency in
context of open systems. With the present theory being
croscopic, the fluctuation-dissipationlike relation~8! remains
an inbuilt characteristic of the model itself as an essen
thermodynamic consistency condition.

~iii ! Based on numerical simulation of the full model p
tential we show that one can recover the turnover feature
the Kramers’ dynamics when the external noise modula
the reservoir rather than the system directly. This recove
we believe, is an offshoot of the derived thermodynam
consistency condition~8!.

~iv! Provided the long-time limit of the moments for th
stochastic processes pertaining to the external and inte
noises characterized by arbitrary decaying correlation fu
tions exist, the expression for the generalized Kramers’ r
of barrier crossing for the open system we derive here
fairly general. We have shown that it agrees reasonably w
with numerical simulation using full potential for this mode

The creation of a typical nonequilibrium open situation
modulating a bath with the help of an external noise is not
uncommon phenomenon in applications and industrial p
cessing. The external agency generating noise does wor
the bath by stirring, pumping, agitating, etc., to which t
system dissipates internally. In the present treatment we
concerned with a nonequilibrium steady state that signifie
constant throughput of energy in contrast to thermal equi
rium defined by a constant temperature. We believe t
these considerations are likely to be important in other
lated issues in nonequilibrium open systems and may s
as a basis for studying processes occurring within irreve
ibly driven environments@6,35# and for thermal ratchet prob
lems @22#.
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FIG. 5. Plot of barrier crossing ratek vs correlation time of the
external noisete for different values of external noise strengthsD.
The solid and the dotted lines are same as in Fig. 3.~a! D50.5, ~b!
D51.0, and~c! D51.5 ~units are arbitrary!.
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APPENDIX: CALCULATION OF VARIANCES

We consider a particular case as an example where
external noisee(t) is d correlated and the internal noise is a
Ornstein-Uhlenbeck process, i.e.,

^e~ t !e~ t8!&e52Dd~ t2t8!

and

^ f ~ t ! f ~ t8!&5
g0

2kBT

tc
e2ut2t8u/tc.

Consequently, from the fluctuation-dissipation relation
derive the dissipative kernel as

g~ t2t8!5
g0

2

tc
e2ut2t8u/tc.

It should be noted that fortc→0, the above noise proces
becomed correlated.

The Laplace transform ofg(t), as given above, can b
written as

g̃~s!5
g0

2

stc11
,

and subsequently, we have fortcÞ0,

h̃~s!5
s1a

s31as21bs1c0

,

where

a5
1

tc
, b5v0

21
g0

2

tc
, and c05

v0
2

tc
.

We find that the inverse Laplace transform ofh̃(s) reads

h~ t !5c1e2D1t1c2e2D2t sin~bt1a!, ~A1!

where the coefficientsc1 , c2 , D1 , D2 , b, anda are given
by

D152A2B1
a

3
, ~A2a!

D25
1

2
~A1B!1

a

3
, ~A2b!

b5
A3

2
~A2B!, ~A2c!

c15
1

2D22D12d
, ~A2d!

d5
a~2D22D1!2D2

22b2

a2D1
, ~A2e!
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A5S 2
a3

27
1

ab

6
2

c0

2
1AQD 1/3

, ~A2f!

B5S 2
a3

27
1

ab

6
2

c0

2
2AQD 1/3

, ~A2g!

c252
c1

b
@~d2D2!21b2#1/2, ~A2h!

a5tan21S b

d2D2
D and ~A2i!

Q52
a2b2

108
1

b3

27
1

a3c0

27
2

abc0

6
1

c0
2

4
. ~A2j!

Here we note that for a physically allowed solutionD1 , D2
must be positive. Since by Eq.~16! h(t) depends on the
memory kernelg(t), which is of decaying type and all th
moments, in general, reach asymptotic constancy as sh
in Sec. III, these quantities are positive~which depends on
the correlation timetc , the strength of the noise, and oth
potential parameters! which may be checked~after some al-
gebra! by considering the limiting cases such astc→0 and
tc→ large.

Substituting Eq.~A1! into the expressions for variance
~external noise isd correlated!, namely into Eqs.~21! and
~22!, we have after some lengthy algebra

sxx
2 ~ t !5sxx

2(i )~ t !1sxx
2(e)~ t !,

where

sxx
2(i )~ t !5kBTS c2R1

c1

D1
D F22v0

2S c2R1
c1

D1
D G

1kBTH 2
c1

D1
e2D1tF222v0

2c2R2
2v0

2c1

D1

1e2D1tS D1c11
v0

2c1

D1
D G2

2c2e2D2t

D2
21b2 F12v0

2c2R

1
v0

2c1

D1
~e2D1t21!G @D2 sin~bt1a!

1b cos~bt1a!#22c1c2e2(D11D2)t sin~bt1a!

2
D2bv0

2c2
2e22D2t

~D2
21b2!2

sin 2~bt1a!2
b2v0

2c2
2e22D2t

~D2
21b2!2

1Fv0
2~2b22D2

2!

~D2
21b2!2

21Gc2
2e22D2t sin2~bt1a!J

~A3!

with
1-9
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R5
1

D2
21b2

~D2 sina1b cosa! ~A4!

and

sxx
2(e)~ t !52DS k0

g0
tcD 2

@c1
2~v0

41D1
412v0

2D1
2!I A~ t !

1c2
2$v0

41~D2
22b2!224b2D2

2

12v0
2~D2

22b2!%I B~ t !12c1c2$v0
41D1

2~D2
22b2!

1v0
2~D1

21D2
22b2!%I C~ t !22c2

2bD2

3~D2
22b21v0

2!I D~ t !14c2
2b2D2

2I E~ t !

24c1c2bD2~D1
21v0

2!I F~ t !#. ~A5!

Here theI ’s are defined by

I A~ t !5E
0

t

e22D1t dt, ~A6a!

I B~ t !5E
0

t

e22D2t sin2~bt1a!dt, ~A6b!

I C~ t !5E
0

t

e2(D11D2)t sin~bt1a!dt, ~A6c!

I D~ t !5E
0

t

e22D2t sin 2~bt1a!dt, ~A6d!

I E~ t !5E
0

t

e22D2t dt and ~A6e!

I F~ t !5E
0

t

e2(D11D2)t cos~bt1a!dt. ~A6f!
e

y

y

06111
Similarly

svv
2 ~ t !5svv

2(i )~ t !1svv
2(e)~ t !,

where

svv
2(i )~ t !5kBT2@~D1

21v0
2!c1

2e22D1t1b2c2
2e22D2t

2bD2c2
2e22D2t sin 2~bt1a!

1~D2
21v0

22b2!c2
2e22D2t sin2~bt1a!

1e2(D11D2)t$2c1c2~v0
21D1D2!sin~bt1a!

22D1bc1c2 cos~bt1a!%# ~A7!

and

svv
2(e)~ t !52DS k0

g0
tcD 2

@c1
2D1

2~v0
21D1

2!2I A~ t !

1c2
2$~v0

21D2
223b2!2D2

22~v0
213D2

22b2!2b2%

3I B~ t !12c1c2D1D2~v0
21D1

2!

3~v0
223b21D2

2!I C~ t !2c2
2bD2~3D2

22b21v0
2!

3~v0
223b21D2

2!I D~ t !1c2
2b2

3~v0
22b213D2

2!I E~ t !22c1c2bD1~D1
21v0

2!

3~v0
213D2

22b2!I F~ t !#, ~A8!

whereI ’s are defined in Eqs.~A6a!–~A6f!. The explicit ex-
pression forsxv

2 (t) can be derived from Eq.~23!. In the limit
t→` we calculate the stationary values of the variances. T
variancessxx

2 (`), svv
2 (`), and sxv

2 (`) yield f(`) and
c(`) and other relevant quantities.
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